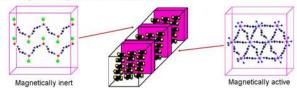
Molecular Hybrid Conducting/Magnetic Materials

John A. Schlueter a, Urs Geiser a, Kylee Hyzer a and Jamie L. Manson b

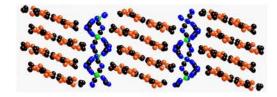

- a Materials Science Division, Argonne National Laboratory
- b Department of Chemistry, Eastern Washington University

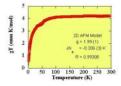
Motivation

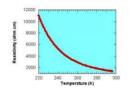
- Hybrid conducting/magnetic materials with interactions between magnetic moments and delocalized conduction electrons could provide indirect RKKY-type magnetic coupling.
- Molecular-based networks are especially interesting because they are highly tunable and easier to process for applications.
- These materials provide model compounds for molecular-based spintronic materials where polarized electrons can be injected into conducting layers.

Goals

 Replace the magnetically inert anionic layer in charge transfer salts with magnetically active component.




- Develop anionic M(dca)₃⁻[dca = dicyanamide, N(CN)₂⁻] frameworks as potential magnetic components for hybrid systems.
 - Potential for strong magnetic superexchange.
 - Solubility permits growth of high quality single crystals and enables processing.
- Develop the structure/property relationships required to rationally design new materials with higher magnetic ordering temperatures.
- Increase coupling between:
 - Magnetic centers in anionic frameworks.
 - > Magnetic and conductive layers in hybrid systems.
- Develop an understanding of the solution and growth dynamics of dca-based coordination polymers in order to control structural and physical properties of hybrid systems.

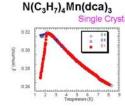

Hybrid Systems

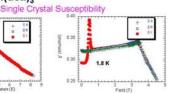
- Crystallization and characterization of a hybrid charge transfer salt containing conductive organic layers separated by magnetic M(dca)₃-sheets.
 - Novel triangular anionic lattice (magnetic frustration).
 - Magnetic and conducting properties not yet optimal.

Magnetic Frameworks

- We have prepared a series of [N(C_nH_{2n+1})₄M(dca)₃ salts [M = divalent first row transition element] in which the size of the templating cation is incrementally increased.
 - Model compounds for developing structure/property relationships.
 - Precursors for synthesis of hybrid materials.

Novel Structures




 Minor changes in templating cation result in dramatic changes in arrangement of single/double dca bridges and topology.

Novel Magnetism

First examples of long range magnetic ordering in M(dca)₃ - systems.

Large Single Crystals

 The highest magnetic ordering temperatures have been obtained through the use of Cr⁺².

	Mn(dca) ₂	Cr(dca) ₂	(TBA)Mn(dca) ₃	(TBA)Cr(dca)
T _N (K)	16	47	2	15
Bridge (atoms)	3	3	5	5
M-M (A)	5.9	5.9	7.7	7.7
0 (K)	-3	-154	-2	-24

Significance

 The structure/property relationships developed in this work will be used to design new anionic magnetic frameworks that can be incorporated into more advanced hybrid materials.

Future Directions

- Incorporate other transition metals into magnetic frameworks:
 - > Vanadium (higher magnetic ordering temperatures expected).
 - > Second row elements (higher coordination numbers).
 - > Bimetallic systems (ferrimagnetic interactions).
- Design the conductive layer in hybrid materials to possess:
 - > Metallic properties.
 - Higher carrier concentrations.
 - > Stronger couplings to magnetic lattice.
- · Explore templating effect of selected cations:
 - Hydrogen bonding.
 - > Cation radicals.
- Nanoscale confined systems.

See: Schlueter, J. A.; Manson, J. L.; Geiser, U. Inorg. Chem. 2005, 44, 3194-3202.

